
An Intermediate Representation
for Structured Input

October 17, 2016
L.E. Busby

Lawrence Livermore
National Laboratory

LLNL-PRES-703906
This work was performed under the auspices of the
U.S. Department of Energy, by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

IREP, The General Idea

In operation, IREP:
— Reads program input in the for m of Lua tables;
— Places the input values into compiled, structured var iables, available

from either C/C++ or For tran, or both together;
— Detects and reports many simple input errors, automatically;
— Can read most any sor t of plain old data without guidance, or anything

else, with some extra effor t.
To set it up:

— You define a data store, a set of well-known tables, the ‘‘compiled,
str uctured variables’’ mentioned above;

— This is essentially the same as writing a set of nested C structs, or
Fortran der ived types;

— The difference is that the ‘‘str ucts’’ are written using simple cpp(1)
macros, one line in, one line out;

— That’s it: No other wrapping nor metaprogramming is needed.

L. Busby An Inter mediate Representation, 2016-10-17 2

Can IREP be Useful to Your Code?

1. IREP is a good way to handle initial problem setup for most common
input data;

2. It contains scalar and 1-D integer, double, logical, and string
variables;

3. It also gives you Lua callback functions, if you want them;
4. Defining one var iable pretty much takes one line of code;
5. It can wor k with C/C++ or For tran codes, or both together, shar ing a

common data store;
6. Defining the IREP data store is pretty easy, best done by a domain

specialist (not a computer scientist);
7. Reading an entire Lua table generally takes one line of code;
8. IREP is fair ly small: About 350 lines of code in the basic system, plus

your tables;
9. Other than that, it doesn’t do much.

L. Busby An Inter mediate Representation, 2016-10-17 3

From Zero to IREP in Eight Steps

1. Lua table constructors are ver y nice:
t = {

t1 = {
a = 3

}
}

2. Each table element has a dual representation: t.t1.a=3;
3. It’s easy to make a reader to convert from (1) to (2);
4. For m (2) looks just like a reference to a C struct;
5. The ISO_C_BINDING maps C to For tran: t.t1.a=3 ⇔ t%t1%a=3

6. For tran read namelist can parse strings like "t%t1%a=3";
7. The C preprocessor can output either C or For tran from one input;
8. So we can read a Lua table, make a For tran string, parse it with read

namelist, and put the result in one spot available to both the C/C++
and For tran code.

L. Busby An Inter mediate Representation, 2016-10-17 4

Lua Table ≈ C Str uct ≡ Fortran Der ived Type

Here is a table as it might appear in the three languages:

Lua C/C++ Fortran
--- ----- -------
t = { s truct irt_t { type, bind(c) :: irt_t

a = 3, i nt a; integer(c_int) :: a=3
b = 7.2, double b; real(c_double) :: b=7.2
s = " abc", char[8] s; character(c_char) :: s(8)="abc"

} } ; e nd type

And here is the IREP definition for the same table:

Beg_struct(irt_t)
ir_int(a,3) // Integer named ‘‘a’’, default value 3.
ir_dbl(b,7.2) // Double named ‘‘b’’, default 7.2.
ir_str(s,8,"abc") // String ‘‘s’’, maxlen 8, default "abc".

End_struct(irt_t)

L. Busby An Inter mediate Representation, 2016-10-17 5

The Lua Table Reader is Simple

Lua input Fortran-compatible output
--------- -------------------------
t = {

a = 3, → "t%a = 3"
b = 7.2, → "t%b = 7.2"
s = " abc", → "t%s = ’abc’"

}

The output of the table reader is a list of strings, each of which ‘‘looks like’’ a
Fortran assignment. These str ings are fed to the assignment parser, (a
Fortran namelist statement), which loads it into the IREP data store.
If there is a matching var iable in the data store, all is well. If not, it’s an error.
(This will catch a large class of input errors, and is a significant benefit.)
So the IR data store effectively defines the set of Lua input tables that can
be recognized by the reader. Such tables are called well-known tables.

L. Busby An Inter mediate Representation, 2016-10-17 6

The Assignment Parser (The Whole Thing)

/* The C part calls a Fortran function ir_rd_nml. */
int read_nml(const char *frep, const char *val) {

char buf[BSZ];
extern int ir_rd_nml(char *, int);
(void)snprintf(buf, BSZ, "&ir_input %s = %s /", frep, val);
return ir_rd_nml(buf, (int)strlen(buf));

}

! T he Fortran function:
integer(c_int) function ir_rd_nml(s,n) bind(c)

integer(c_int), value, intent(in) :: n
character(len=1,kind=c_char), intent(in) :: s(n)
character(kind=c_char,len=n) :: fs
namelist /ir_input/ table1, table2, ...
fs = transfer(s,fs)
read(fs, nml=ir_input, iostat=ir_rd_nml)

end function

All the wor k is done by the read(fs, ...) statement. The namelist statement
registers the var iables table1, table2.

L. Busby An Inter mediate Representation, 2016-10-17 7

Limitations

1. IREP stores ‘‘plain old data’’, strictly typed, along with Lua callback
functions that accept double precision parameters and return double
precision values.

2. There is an escape mechanism to store other sorts of things, but that
does take some wor k.

3. C/For tran interoperability rules limit IREP to static objects: Array sizes,
including string lengths, are defined at compile time;

4. Strings, though standard, are neither idiomatic ‘‘C’’ nor ‘‘For tran’’. (An
equal opportunity annoyance.)

5. Names in the IR follow the For tran rule of case insensitivity.
6. The data store has no introspection, nor bulk operations.
7. From the Lua table reader’s perspective, the data store is ‘‘wr ite-only’’.
8. You need to use both C/C++ and For tran compilers to build IREP.

L. Busby An Inter mediate Representation, 2016-10-17 8

IREP in the MAPP Code Project

— We have built an IREP data store containing 425 var iables in 740 LOC,
spread over 62 str uctures and 10 well-known tables.

— About 94% are scalars, the rest are vectors of var ious lengths.
— It also contains about 64 Lua callback functions, with 3−5 parameters,

and 1−3 return values.
— Near ly all the project-specific code (the structure and contents of the

well-known tables) has been written by the code physicists. It does not
require a code specialist.

— The project centers around a collaboration between a C++ code and a
Fortran code, that read a common input for mat. IREP has provided a
simple, crisp way for the collaborators to define agreement on the input
and keep moving forward.

L. Busby An Inter mediate Representation, 2016-10-17 9

Example: The initial_conditions well-known table

#include "ir_start.h"

Beg_struct(irt_ic_material)
ir_int(region,-1)

Callback_dd(density)
Callback_dd(energy)
Callback_dd(volume_fraction)
Callback_dd(burn_fraction)

End_struct(irt_ic_material)

Beg_struct(irt_initial_conditions)
ir_dbl(start_time,0.0e0) // Time at which to start simulation
ir_dbl(stop_time,1.0e99) // Time at which to stop simulation
ir_dbl(time_step,1.) // Initial time step

Vstructure(irt_ic_material,material,0:98,99)
Callback_dd(magnetic_field)
Callback_dd(velocity)
Callback_dd(temperature)
Callback_dd(ion_temperature)

End_struct(irt_initial_conditions)

// Declare it.
ir_wkt(irt_initial_conditions, initial_conditions)

#include "ir_end.h"

L. Busby An Inter mediate Representation, 2016-10-17 10

Example: Lua initial_conditions problem input

local rho0, e0, eps = 1, 0, 1.e-6

initial_conditions = {
start_time = 0,
stop_time = 0.6,
velocity = function(x,y,z)

local r = math.sqrt(xˆ2 + yˆ2 + zˆ2)
if (r > eps) then

return -x/r, -y/r, -z/r
else

return 0,0,0
end

end,
material = {

[1] = {
density = rho0, -- A constant function.
energy = e0,
volume_fraction = 1.0,

}
}

}

L. Busby An Inter mediate Representation, 2016-10-17 11

Av ailability

— Lee Busby: busby1@llnl.gov
— https://github.com/LLNL/irep

This is the README for IREP. See also etc/doc/ for additional
documentation.

The Intermediate Representation (IR) is a tool for constructing a set
of C/C++ and Fortran data structures, and a tool for reading Lua tables
into those structures. It is built around the observation that the
textual representation of Lua table elements can frequently be mapped
directly into a C/C++ struct, or a Fortran derived type. Suppose a Lua
table constructor is given as follows:

t1 = {
t2 = {

x = 4 2,
}

}

With appropriate prior definitions, we could alternatively write:

t1.t2.x = 42 -- Lua
t1.t2.x = 42 // C/C++
t1%t2%x = 42 ! F ortran
[. ..]

L. Busby An Inter mediate Representation, 2016-10-17 12

